

Possible proteases for locating TPCK-peptide

Trypsin

```
CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFH FCGGSLINEN 50
WVVTAAHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLST AASFSQTVSA VCLPSASDDF AAGTTCVTTG WGLTRYTNAN 150
TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSGGPLV 200
CKKNGAWTLV GIVSWGSSTC STSTPGVYAR VTALVNWVQQ TLAAN
Glu-C
CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFH FCGGSLINEN
                                                        50
WVVTAAHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLST AASFSQTVSA VCLPSASDDF AAGTTCVTTG WGLTRYTNAN 150
TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSGGPLV 200
CKKNGAWTLV GIVSWGSSTC STSTPGVYAR VTALVNWVQQ TLAAN
Chymotrypsin
CGVPAIQPVL SGLSRIVNGE EAVPGSWPWQ VSLQDKTGFH FCGGSLINEN 50
WVVTAAHCGV TTSDVVVAGE FDQGSSSEKI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLST AASFSQTVSA VCLPSASDDF AAGTTCVTTG WGLTRYTNAN 150
TPDRLQQASL PLLSNTNCKK YWGTKIKDAM ICAGASGVSS CMGDSGGPLV 200
CKKNGAWTLV GIVSWGSSTC STSTPGVYAR VTALVNWVQQ TLAAN
```


In the simplest case, an enzyme (E) reacts with a substrate (S) - an intermediate complex is formed (ES) and it is converted to an enzyme: product complex (E:P) before the product dissociates.

 $E + S \longrightarrow ES \longrightarrow EP \longrightarrow E + P$

First order reaction - some second order reactions behave like a first order reaction when there is an excess of one substrate and the conversion of the other is <10%.

Multiplexed analysis of the drug metabolizing enzymes

Approach	Advantages	Disadvantages
Cocktail strategy	Several activities in a single experiment Reduced number of samples Less time and expense Enhanced throughput Rapid microsomal characterization Rapid phenotype of tissues	Probe-probe interaction Ion suppression Metabolism overlapping
Individual strategy	Selective CYP activity Avoids overlapping metabolism Avoids probe-probe interaction	Large number of strategies Time consuming analysis
	Stephen Barnes BMG 744 02-13-13	Lahoz et al., 2008

- The physical state of the enzyme with its substrates and inihibitors can be readily observed and quantified by ESI-MS
- Requires sufficient protein (in the Ritschel study they used 1-10 μM – for a 25 kDa protein, this would be 25-250 mg/L or 25-250 μg/ml)
- The spraying medium is important in this case 500 mM ammonium acetate, pH 8

	BAAT homologies				
1	MIQLTATFVSALVDEPVHIRATGLIFFQMVSFQASLEDENGDMFYSQAHYRANEFGEVDLNHASSLGGDYMGVHPMGLFW	80	human BAAT		
1	MIQLTATPVSALVDEPVHIRATGLIPF <u>OMVSFQ</u> ASLED <u>ENGDMFY</u> SQAHYRANEF <mark>GEVDLNHASSL</mark> GGDYMGVHPMGLFW	80	orangutan BAAT		
1	MIQLTATPVSALVDEPVHIRATGLTPFOMVSFQASLEDENGDMFYSQAHYRANEFGEVDLKHASSLGGDYMGVHPMGLFW		gibbon BAAT		
1	MIQLTATPVSALVDEPVHIQATGLTPFQMVSFQASLEDESGNMFYSQAHYRANEFGEVDLKHASSLGGDYMGVHPMGLFW		rhesus BAAT		
1	MIQLTATPVSALVDEPVHIRATGLTPFQVVSFKASLEDEKRNMFYSQAHYRANEFGEVDLEHASSLGGDYVGVHPMGLFW		marmoset BAAT		
1	MIQLTATPASALVDEPVHIRATGLTPFQIVLLQASLEDEMGNMFHSQAYYRANEVGEVDLEHASSLGGDYVGVHPMGLFW	80	horse BAAT		
1	MYOLTATPLSALVDEPVHIRATGLTPLQLVVFHASLEDEVGNLFYSRAFYRANEVGEIDLDHAAALGGDYKGVHPMGLFW		rabbit BAAT		
1	MVOLTATPLSALVDEPVHIRATGLTPLQLVVFHASLEDEVGNLFVSRAFYRANEVGEIDLDHAAALGGDYKGVHPMGLFW	80	rabbit BAAT		
1	MIQLTATPISALVDEPVHIQVTGLYPSOMVVFAASLODEOGNMFHSOACYKANEVGEVDLEYASALGGDYVGVHPMGLFW		elephant BAAT		
1	MAKLTAVPLSALVDEPVHIQVTGLAPFOVVCLOASLKDEKGNLFSSQAFYRASEVGEVDLEHDPSLGGDIMGVHPMGLFW		mouse BAAT		
1	MAKLTAVPLSALVDEPVHIOVTGLAPFOVVCLOASLKDERKPV-SSOAFYRASEVGEVDLEHDPSLGGDYMGVHPMGLFW		mouse BAAT		
1	MAKLTAVPLSALVDEPVHIRVTGLTPFQVVCLQASLKDDKGNLFNSQAFYRASEVGEVDLERDSSLGGDYMGVHPMGLFW		rat BAAT		
1	MAKLTATPLSALVDEPVHIQVAGLMPFEVVCLQASLKDEKGNMFGSKAYVRANEVGEVDLERDSSVGGDYMGVHPMGLFW	80	hamster BAAT		
9.1		160	human Baam		
81	CT KOF VILT KUNNAD FANAS TY YY YNAIDDIOL TYNNYYD SADKAS STALS MET YN CYMAR YN AN AC AL AGAL AGAL FY DOG FAL	160	orangutan BAAT		
81		159	cibbon BAAT		
81	ST KOFKTITETILKONWINKOFOVOLKIVINTETITVINKAASADKASITERWYVAAGUTETOVOEGOTEGOT	160	Thesus BAAT		
81	ST K PEKPI KRULKROWNSPROVOLELYD TELLONNKAT SAPKASLTLKRWYVAPGUTETOUR CELEGNI FLPSGEGOF	160	marmoset BAAT		
81	ST KOFK T LTRILLER DUMNS DER VOLKT, YNSNUTT, TNKATADDTUST, TLRBWYVA DOUT TOUR COT BOAT FLDPCECRE	160	horse BAAT		
81	ST K DOKT, UT PLI, LK R DUMTS DER VOT KI, VD PHI, DT FTKT SEA DKA SUTLER WYVA DOUTH T DUR PORT BOTT FURSCE OFF	160	rabbit BAAT		
81	ST KPOKTUTRI, TKROWNTSPERVOT KLYDEHL PTETKTSFARKASUTLERWYVAPGUTETPURECELEGT FVPSGEGRE	160	rabbit BAAT		
81	SMKPKKLLTRLMKKDWNC PFOVPLKLYDLDISVIKFTTATPKASLTVERWYVAPGVTRTOVREGRIRGALLLPPGDGPF	160	elephant BAAT		
81	SI K PEKLIGRITI K RDVMNSPYOTHT KACHPY FPLODT V VSPPLDSI TERNY VAPGVKR TOUKES BT BOAL FF POR OP	160	mouse BAAT		
80	ST KDEKLIGRI TKROUTNS PYOTH TKACH PYFPLODI UVSPPLOSITIERWYVA POKKETOVKEST ROALFEL PPCECPE	159	mouse BAAT		
81	SMKPEKLLTRLVKRDVMNRPHKVHIKLCHPYFPVECKVISSSLDSLILERWVVAPGVTRIHVKEGBTBGALFTPPGRGPE	160	rat BAAT		
81	SI KPEKLISRIAKKDU-TSPYOVHIELCKPHFPVKGIVVSPPMDSITLERWVVAPDVTRIOVKEGRIRGALFIPPGEGPF	159	hamster BAAT		
			Diana Con Diana		
1					
1					
1					
1					
Stephen Barnes BMG 744 02-13-13					
1					
1					

BAAT homologies						
320 FLFIVGEGDKTINSKAHAEOAIGQLKRHGKNNWTLLSYPGAGHLIEPPYSPLCASTTHDLRLHWGGEVIPHA-A 310 FLFIVGEGDKTINSKAHAEOAIGQLKRHGKNNWTLLSYPGAGHLIEPPYSPLCASTTHDLRLHWGGEVIPHA-A 312 FLFIVGEGDKTINSKAHAEOAIGQLKTHGKNNWTLLSYPGAGHLIEPPYSPLCASTTHDLRLHWGGEVIPHA-A 320 FLFIVGEGDKTINSKAHAEOAIGQLKTHGKNNWTLLSYPGAGHLIEPPYSPLCASTTHDLRLHWGGEVIPHA-A 320 FLFIVGEGDKTINSKAHAEOAIGQLKHGKNNWTLLSYPGAGHLIEPYSPLCASTHDLRLHWGGEVIPHA-A 320 FLFIVGEDKNINSKAHAEOAIGQLRKGKNNWTLLSYPGAGHLEPYSPLCASKLSNFHPLHWGGEVIPHA-A 320 FLFIVGEDKNINSKAHAEOAIGQLRKGKNNWTLLSYPGAGHLEPYSPLCASKLSNFHPLHWGGEVIPHA-A 320 FLFIVGEDKNINSKAHAEOAIGQLKKGKNWTLLSYPGAGHLEPYSPLCCASKLSNFHPLHWGGEVIPHA-A 320 FLFIVGEDKNINSKAHAEOAIGQLKKGKNWTLLSYPGAGHLEPYSPLCCWGIANUCSAIHWGGEVUPHA-A 320 FLFIVGEDDKNINSKVHKONAKYFKKOATEQLKRGKNWTLLSYPGAGHLEPYSPLCCWGIANUCSAIHWGGEVUPHA-A 320 FLFIVGEDDKNINSKVHANOAIAQLMKNGKKNWTLLSYPGAGHLEPYTPLCOASKNPILIPSLSWGGEVIPHA-A 320 FLFIVGEDDKNINSKVHANOAIAQLMKNGKKNWTLLSYPGAGHLEPYTPLCOASKNPILIPSLSWGGEVIPHA-A 320 FLFVUGEDDKNINSKVHANOAIAQLMKNGKKNWTLLSYPGAGHLEPYTPLCOASKNPILIPSLSWGGEVIPHA-A 320 FLFVUGEDDKNINSKVHANOAIAQLMKNGKKNWTLLSYPGAGHLEPYTPLCOASKNPILIPSLSWGGEVIPHA-A 320 FLFVUGEDDKNINSKVHANOAIAQLMKNGKKNWTLLSYPGAGHLEPYTPLCOASKNPILIPSLSWGGEVIPHA-A 320 FLFVUGEDDKNINSKVHANOAIAQLMKNGKKNWTLLSYPGAGHLEPYTPLCOASKNPILIPSLSWGGEVIP	QE 396 QZ 396 QZ 395 QZ 396 QZ 396 QZ 396 QZ 396 QZ 396 QZ 398 QG 398 QG 398 QG 398 QG 398 QZ 398 397	human orangutan gibbon rhesus marmoset horse rabbit elephant mouse mouse rat hamster				
397 RSWKEIQKFLKKHLIPVLTSOL 418 elephant 399 RSWKEIQKFLKQHLPDLSSOL 420 mouse 399 RSWKEIQKFLKQHLPDLSSOL 420 mouse 399 RSWKEIQKFLKQHLPDLSSOL 420 mouse 399 RSWKEIQKFLKQHLPDLSSOL 420 rat 398 RSWKEIQKFLKHLILDKTSOL 419 hamster Stephen Barnes BMG 744 02-13-13						

Stephen Barnes BMG 744 02-13-13

Shonsey et al., 2007

